Decay Kinetics in Ballistic Annihilation
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We study the kinetics of ballistic annihilation, A4+ A — 0, with continuous initial particle velocity
distributions. The concentration and the rms velocity are found to decay as ¢ ~ ¢t~ and vyms ~ ¢t
respectively, with the relation a+ (3 = 1 holding in any spatial dimension. A “mean-field” Boltzmann
equation for the evolution of the velocity distribution predicts that « and 8 depend strongly on the
initial condition. This non-universal behavior is confirmed numerically in one and two dimensions.

PACS. Numbers: 68.704+w, 03.20.+i, 05.20.Dd, 05.40.4+j

For irreversible diffusion-controlled reactions, it is now
widely appreciated that the density decays more slowly
than the predictions of mean-field theory in sufficiently
low spatial dimension. For two-species annihilation, this
behavior is accompanied by the dynamic formation of
large-scale spatial heterogeneities in an initially homoge-
neous system [1]. The contrasting situation where the
reactants move ballistically has received much less atten-
tion, however, and relatively little is known.

A number of interesting results have been recently re-
ported for the kinetics of irreversible aggregation, A; +
Aj; — A,;4;, with ballistic trajectories for the aggregates
and with momentum conserving collisions [2,3]. Here
the subscript refers to the (conserved) mass of the ag-
gregates. This model has been invoked as an idealiza-
tion of processes such as the coalescence of fluid vor-
tices [4] and planet formation by accretion [5]. For the
ballistic aggregation model, a scaling argument suggests
that the concentration of aggregates decays as t~%, with
a = 2d/(d+2), where d is the spatial dimension [2]. This
dimension dependence for all d is atypical of the behavior
pattern exhibited by diffusion-controlled reactions. Fur-
thermore, microscopic considerations show that the de-
cay of the density of fixed-mass aggregates disagrees with
the predictions of the scaling argument [3].

Motivated in part by these intriguing features, we
investigate the decay kinetics of the more elementary
single-species annihilation process, A + A — 0, for ar-
bitrary continuous initial velocity distributions. We find
that the decay of the density depends non-universally
on the initial velocity distribution. A Boltzmann equa-
tion for the evolution of the velocity distribution ac-
counts for the dependence of the decay exponent a on
the form of the velocity distribution and on the spatial
dimension. Our predictions are verified in one and two
dimensions by numerical integration of the Boltzmann
equation and by Monte Carlo simulations. It is worth
noting that for one-dimensional single-species annihila-
tion with a discrete bimodal initial velocity distribution,
P(v,t = 0) « pd(v —1) + (1 — p)é(v + 1), the density
decays as t~/2 for p = 1/2, while the minority veloc-
ity species decays exponentially for p # 1/2 [6]. These
results can be inferred by mapping the kinetics onto a

first-passage process for a one-dimensional random walk.
When the velocities are continuously distributed, this line
of reasoning is inadequate to account for the wide range
of possible kinetic behaviors.

At time t = 0, the system consists of identical par-
ticles which are distributed in space with P(v,t)i the
initial concentration of particles of velocity v. Without
loss of generality the average initial velocity can be cho-
sen to be zero. The decay kinetics appears to be in-
dependent of the initial spatial distribution of particles
and for simplicity we focus on a random initial distribu-
tion. Particles move according to their initial velocity
until a collision occurs, which results in the removal of
both colliding particles. We are interested in determin-
ing the time dependence of the macroscopic concentra-
tion, ¢(t) = [ dvP(v,t), and the moments of the velocity

distribution, (v")'/" = ( [ dv U"P(U,t)/c(t))l/n.

A simple power counting argument relates the density
decay exponent o with the exponent § which character-
izes the decay of the typical velocity, vyms ~ t~?. Con-
sider a system of identical particles of fixed radius r at
concentration ¢ which move with a velocity of the order
of Uyms. From an elementary mean-free path argument,
the time between collisions is t ~ 1 /cvrmsrd_l. If one
assumes the following power law forms for the concen-
tration and vy,

c~te Urms "™~ tiﬁa (1)

then the mean-free path argument indicates that the re-
lation o + 8 = 1 should hold for all spatial dimension
d.

Since the lifetime of particles with velocity v is pro-
portional to 1/v, faster particles tend to annihilate more
quickly, and the typical velocity should decay in time.
By the relation between « and 3, a value of « less than
unity is therefore implied. We further argue that there
is a strong dependence of the exponent o on the form
of the initial velocity distribution. This behavior differs
from the mean field prediction of ¢ ~ ¢t~! which arises
from the naive rate equation ¢ ox —kc?.

A useful approach for determining the decay kinetics
is to write a Boltzmann equation for the time evolution
of the velocity distribution. For simplicity, consider the



case of one dimension; generalization to higher dimen-
sions follows naturally. Let P(x,v,t) be the density of
particles with velocity v at position x and at time ¢. At
time ¢ + At, the velocity distribution changes both be-
cause of translation of particles and because of reactions.
We treat the reaction term in a mean-field approxima-

tion by assuming that a particle at 2’ < z and velocity
v’ > v will necessarily react with the target particle at
(z,v) when z—a’ < (v'—v)At. There is a complementary
contribution due to collisions between the target and a
particle located at 2’ > x with v/ < v.

The sum of these two contributions leads to the Boltzmann equation for ballistic annihilation

v w+(v—v')At

P(x +vAt,v,t + At) — P(z,v,t) = —kP(z,v,t) [/ / dx’ P(x' v t) + / dv’ / dx' P(x' v t)|, (2)

v x—(v'—v)At —0 T

where k is a dimensionless reaction constant. Since a collision leads to particle annihilation, there is no collision-
induced gain term in the equation. This approximate equation overcounts collisions, since the incident particle at z’
may react with a third particle rather than with the target particle. We anticipate that such three-body interactions

will have a relatively small effect on the kinetics.

To analyze the Boltzmann equation, we expand Eq. (1)
to first order in At to arrive at

OP(z,v,t)  OP(z,v,t)
ot T ®)
—kP(z,v,t) / dv'lv —v'|P(z,0',t).

Since the initial velocity distribution is spatially homo-
geneous, and because of the homogeneity of the reaction
process, we assume that the velocity distribution remains
spatially homogeneous. Thus we write P(v,t) to signify
the time-dependent and spatially homogeneous concen-
tration of particles with velocity v. This implies that the
convective term OP/90z in the Boltzmann equation may
be set to zero, leading to
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Thus the [v—v'| dependence of the integral kernel controls
the reaction rate between two particles. Eq. (3) is also
strongly reminiscent of the Smoluchowski equation for
ballistic aggregation [3]. Despite the uncontrolled nature
of the approximations underlying Eq. (3), this formula-
tion gives a useful quantitative description of the decay
kinetics.

The first step in our analysis of the Boltzmann equa-
tion is to apply dimensional analysis, together with the
assumed asymptotic behaviors, ¢ ~ t~% and vVyms ~ t 7,
to reduce Eq. (3) to a single variable equation. From
these considerations, we expect that the velocity distri-
bution will have the following scaled form

P, = (Zo)ﬁ 1(2), (50)

where the scaling function f(z) depends only on the di-
mensionless velocity
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Here tg = 1/(kcouo) is the initial characteristic time be-
tween reactions, with k the dimensionless reaction con-
stant, ¢y the initial concentration, and vy the initial rms
velocity. Upon substituting this scaling form into Eq. (3),
we immediately confirm the exponent relation a+ 3 = 1.
Additionally, we obtain a rescaled Boltzmann equation
for the scaling function

oo

(28— 1)f(2) + B21(=) = —f(2) / 0 |z — 2| ().

—00

(6)

Notice that this equation is invariant under the transfor-
mation f(z) — a?f(az), so that a unit normalization of
f(2) can be achieved by a scale change in z. To find the
large-z tail of the scaled velocity distribution, we approx-
imate |z — 2’| ~ |z| in the integral and use the fact that
f(2) vanishes as z — co. These steps reduce Eq. (5) To
a simple differential equation whose solution is
F2) ~ 2O exp(—2l/B) ol > 1 (7)
Near the origin, Eq. (5) admits different solutions for
f(2), and correspondingly, the exponent (3 depends on
the form of the initial velocity distribution. To treat the
small-z limit, we first divide Eq. (5) by f(z) to yield

28 =1)+Alim (0 f2) = =2 [ I 9

Consider an initial velocity distribution with a power-
law tail in the small velocity limit, P(v,t = 0) o |v|t.
Our Monte Carlo simulations (discussed below) reveal
that the scaled distribution retains the same power-law



form, f(z) ~ z*, in the small-z limit. Adopting this
form in Eq. (5), then the second term is simply equal
to Bu. The resulting equation then predicts that 3 is
a monotonically decreasing function of p (for g > —1)
whose precise form depends on the first moment of f(z).
This moment, in turn, depends on the full details of the
velocity distribution. For example, if we take as a trial
function f(z) o z#e=*/% in Eq. (6), i.e., the product of
the asymptotic behaviors, we obtain 8 = ﬁ Thus,
by tuning 8, « = 1 — 8 can be set to any value between
0 and 1. This estimate for § manifests the strong de-
pendence of the decay kinetics on the initial conditions.
As the velocity distribution contains slower particles the
concentration decays slower and conversely, the velocity
decays faster. This estimated form qualitatively mirrors
values for § obtained by numerical integration of Eq. (3)
and on Monte Carlo simulations for various values of u.

The generalization of the scaling approach for the
Boltzmann equation to higher spatial dimensions is
straightforward. The scaled velocity distribution func-
tion now takes the form

Bd—a = B8
P(v,t):c—0<t) £(Z), with z:ﬁ(i> ,

vo \ to vy \ to
9)

where the exponent combination gd originates from an
integration over d-dimensional velocity space. The cor-
responding rescaled equation for f(Z') becomes

[—1,1] into 200 bins with a time step of At = 0.15. A
finer level of resolution gives essentially identical results.
The integration was performed to 1000 time steps. To
estimate the value of 3, we computed the “test” scaling
function f(z;t)test oc t!7 2t P(v,t) at different times,
and adjusted Biest to achieve the best data collapse be-
tween different data sets. We quantitatively made this
determination by minimizing the rms deviation between
pairs of data sets for which the time differed by a fac-
tor of 2. By this method, we obtained estimates for the
exponent J with an uncertainty of less than 0.005.

We also performed Monte Carlo simulations for bal-
listic annihilation in one and two dimensions which are
based on two independent approaches. One method sim-
ulates the ballistic motion as a biased random. In two di-
mensions, an particle at 7; is assigned a velocity (v, viz ),
with |viz], |viy| < 1, according to an initial velocity distri-
bution with support in [—1,1]%. A move attempt consists
of picking each occupied site 7; at random and the par-
ticle is moved by an amount (sgn(v;;),0) with probabil-
ity |vig| and by an amount (0, sgn(viy,)) with probability
|viy|. If a particle lands on an occupied site, both parti-
cles are removed from the system. The time is then incre-
mented by the inverse of the current number of particles
in the system. The attraction of this stochastic method
is that it is easily implemented in any spatial dimension.
However, the stochastic nature of the individual parti-
cle moves introduces diffusion in addition to the primary
ballistic motion. This may lead to a crossover associated
with the transition between diffusion and drift in a biased
random walk.

((d+ 1) - 1)f(5) +8Z-V[f(Z)=—-f(Z) / dz'|z - 2l|f(2/)'0ur second method is an exact time evolution by syn-
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(10)

To determine the relation between the exponents p and
(3 we again assume a small-z power law form f(2') o |Z|H,
with 4 > —d, and a relatively sharp cutoff in f(2) for
large |Z|. When employed in the Boltzmann equation,
these assumptions again lead to a qualitatively correct
p-dependence of 5. Namely, / monotonically decreases
with p, and has the limits 8 — 1 for y — —d, and 8 — 0
for ;1 — oco. As in the case of one dimension, if we adopt
f(2) « |Z|te”1Z1/8 ] then we find 8 = m. Con-
versely, as the spatial dimension increases, 8 decreases
systematically, and the limit o = 1 is approached but
never reached. This behavior corresponds to the naive
rate equation ¢ = —kc?. Thus only in the d = oo limit
are particle trajectories sufficiently transparent that the
typical velocity does not decrease. This is in contrast to
the situation of many diffusion-controlled reactions for
which “transparent” behavior occurs for only d >= d,
with d, finite [1].

To test our approximate analysis, we have performed
direct numerical integration of the Boltzmann equations,
Eq. (3) and Eq. (5) (Table 1). In one dimension, a typi-
cal integration was based on dividing the velocity range

chronous dynamics, an approach which is restricted to
one spatial dimension. Particle velocities and positions
are initialized on a periodic one-dimensional chain. The
collision time for each nearest-neighbor pair is computed
and the minimum pair collision time 7, is retained.
The particles then move ballistically over a time 7y,
so that the particle pair whose collision time equals Tyin
is removed, and the time is incremented by 7,i,. The
determination of 7,3, and subsequent update of particle
positions by this minimum time interval is then iterated.

MC|MC| NI
dimension|P(v,t =0)/co| 6 | o | «
1 uniform  |0.20{0.77(0.77
1 lv|=1/2/4  10.42]0.56|0.60
1 lv|=4/5/10 ]0.66|0.32|0.37
2 uniform  [0.10]0.89]0.91

Table 1 Numerical values for the decay exponents o and
B based on numerical integration of the Boltzmann equation,
Eq. (4), and on Monte Carlo (MC) simulations. Results are
given for several representative initial velocity distributions.

Our two simulation methods give essentially identical
results and we quote exponent estimates based on the
biased random walk algorithm, since it can be applied



in both one and two dimensions (Table 1). The expo-
nents are determined by measuring the slopes of succes-
sive pairs of data points when time-dependent quanti-
ties are plotted on a double logarithmic scale. Typically
there is a non-negligible temporal range for which the
value of the slope is most stable, and we adopt the av-
erage value of the slope in this range as the exponent
estimate. The accuracy of the simulation can be inferred
from the deviation of the numerical estimate for o +
from its expected value of unity. The basic conclusion
from our numerics is that the decay exponents a and
are indeed non-universal and depend on the nature of
the initial velocity distribution. The numerical integra-
tion of the Boltzmann equation also provides an excellent
approximation for the simulation results.

The non-universality displayed by ballistic single-
species annihilation with continuous velocity distribu-
tions suggests several interesting avenues for further in-
vestigation. One such situation is ballistic annihilation
with a trimodal initial velocity distribution, P(v,t =
0) o< p10(v—1)+pod(v)+p-_d(v+1), with p, +po+p_ =
1. This system exhibits considerably richer kinetics
than that of ballistic annihilation with a bimodal ve-
locity distribution [6,7]. For the symmetric situation of
p+ =p— =p = (1—pp)/2, numerical simulations reveal a
decay which depends non-universally on pg. For pg — 0,
the density of stationary particles decays as ¢(?) ~ t=%0,
with ag 2 1, while the density of mobile particles decays
as ¢F) ~ 7% with ay 1/2, as might be expected.
However when the value of pg is increased, there is a sys-
tematic decrease in ag and a corresponding increase in
ay. When pg reaches 0.25, we find g = oy = 2/3. For
larger values of py, ¢(?) saturates at a finite limiting value
while ¢ decays faster than a power law.

Another interesting variation is ballistic fusion, A +
A — A, in which the collision product takes on the veloc-
ity of one of the incident particles according to a specified
rule (such as retaining the smaller, or the larger of the
two incident velocities). Numerical simulations of this
process give results which are distinct from those of the
stoichiometrically identical momentum conserving aggre-
gation process.

Finally, it may prove interesting to study single species
annihilation for which the diffusion coefficient of each re-
actant is drawn from a continuous distribution. Particles
with a larger diffusion coefficient will explore a larger
area and thus may be expected to decay more rapidly in
time. Hence, it is reasonable to assume that the average
diffusion coefficient of the surviving particles will decay
according to the power law (D) ~ t7#. When this is
used in an estimate of the mean collision time between
particles, one finds the relation 2a/d + 8 = 1 between
the diffusion coefficient decay exponent and the concen-
tration decay exponent. Based on the behavior observed
in ballistic reactions, we anticipate that non-universality

in « and § may also occur for reactions in which the
particles possess continuously distributed diffusion coef-
ficients.

In summary, the kinetics of ballistic annihilation with
general distributions of particle velocities exhibits a rich
variety of decay kinetics. Both numerical and analyti-
cal approaches indicate that there is non-universality in
the exponents that describe the time dependence of the
concentration and the typical velocity. An approximate
theory, based on a mean-field Boltzmann equation, suc-
cessfully accounts for the dependence of these exponents
on the initial velocity distribution. It is intriguing that
an initial velocity distribution with a large component of
slower particles gives a weak decay of the concentration
and relatively faster decay of the typical velocity. As the
spatial dimension is increased, the “transparent” limit
«a =1 is approached but apparently never reached.
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FIGURE CAPTIONS

Fig 1 Representative Monte Carlo simulation results
for the concentration and the rms velocity vs./ time. (a)
An average over 5000 realizations for an initial velocity
distribution P(v,t = 0) = colv|~'/2/4 on a 1000-site lat-
tice at initial concentration ¢g = 0.3. (b) An average over
500 realizations for a uniform distribution of velocities on
a 100 x 100 lattice at initial concentration cg = 0.3.



